

Evaluation of liver transplantation services in Kazakhstan: 2012-2023

Yuliya Semenova^a, Saule Shaisultanova^b, Altynay Beyembetova^b, Aruzhan Asanova^c, Aliya Sailybayeva^c, Shoplan Altynova^c,
Yuriy Pya^c

^a*Nazarbayev University, School of Medicine, Astana, 010000, Kazakhstan*

^b*RSE on PCV "Republican Center for coordination of transplantation and high-tech medical services" of the Ministry of Health, Astana, 010000, Kazakhstan*

^c*Corporate Fund "University Medical Center", Astana, 010000, Kazakhstan*

Abstract

There is a scarcity of publications evaluating the performance of the national liver transplantation (LTx) program in Kazakhstan. To address this gap, this study aimed to analyze historical trends in LTx surgeries and liver transplant centers from inception (2012) to the present (2023). Additionally, the study analyzes the national cohort of patients awaiting LTx, examining their survival, and assesses the epidemiology of common liver disorders indicating LTx. A survival analysis of patients awaiting LTx but not receiving it was conducted using life tables and Kaplan-Meier methods. Time series analysis was applied to examine historical trends of LTx, liver transplant centers per million populations (pmp), and selected types of viral hepatitis and liver cirrhosis per 100,000 populations, projecting future developments until 2030. The overall pmp rate of LTx ranged from 0.35 to 3.77, with LTx from living donors surpassing those from deceased donors multiple times. The pmp rates of liver transplant centers ranged from 0.06 to 0.40. A total of 474 patients underwent LTx, while another 364 patients were on the waiting list but did not receive transplantation. The 30-day cumulative survival on the waiting list was 87.0%. Without targeted interventions, the pmp rates of LTx and liver transplant centers are expected to remain stable, contributing to the backlog of unoperated patients awaiting transplantation.

Keywords: liver transplantation, fibrosis and cirrhosis, viral hepatitis, survival, time series, Kazakhstan.

1. Introduction

Liver failure, characterized by the inability of the liver to perform its metabolic and synthetic functions adequately, poses a growing public health challenge. It manifests as acute or chronic, triggered by various liver diseases such as viral and autoimmune hepatitis, cirrhosis, hepatocellular carcinoma, metabolic liver diseases, among others [1]. Acute hepatic failure progresses rapidly within less than 12 weeks, with drug-induced liver injury being the primary cause in developed nations, while viral hepatitis prevails in developing countries [2]. Chronic liver failure, lasting more than 6 months, represents a progressive deterioration of liver functions commonly attributed to liver fibrosis and cirrhosis, the advanced stages of liver disease [3]. Despite recent strides in managing viral hepatitis through widespread vaccination against hepatitis B and improved hepatitis C treatment, cirrhosis's prevalence is on the rise, ranking as the 11th leading cause of death and 15th leading cause of morbidity in 2016 [4].

Treatment for both acute and chronic liver failure focuses on addressing the underlying cause and managing associated complications [1]. Liver Transplantation (LTx) stands as the gold standard of care for patients with acute and chronic end-stage liver failure, especially when medical therapy proves ineffective [5]. Indications for LTx include hepatic encephalopathy, bleeding varices, or ascites, and decisions are based on

a comprehensive examination. Various scoring systems integrating biochemical tests with patients' clinical presentations have been proposed to select suitable candidates for LTx [6, 7]. Despite advancements in LTx techniques, a successful surgery requires a multidisciplinary approach involving an interprofessional team and substantial financial resources [8].

Typically, two sources of donors are used for LTx: living and deceased. Deceased donor transplants constitute the majority in the Western world, exceeding 90 %, while in many Asian countries, there is a greater reliance on living donors, contributing to 24 % of global LTx in 2022 [9]. The Global Observatory on Donation and Transplantation (GODT) reported 37,436 LTx surgeries in 2022, reflecting an 8 % increase from 2021 [10]. Despite this increase, the demand for LTx far surpasses the supply, resulting in patients on waiting lists either succumbing to their conditions without receiving transplants or becoming unsuitable candidates for LTx [9].

Kazakhstan, a former Soviet state in Central Asia, initiated LTx activities in 2012. Like other Asian countries, living donor transplantations are more prevalent than cadaveric LTx, contributing to one of the lowest LTx rates globally [10]. However, there is a dearth of publications evaluating the performance of the national LTx program. Existing reports focus on single-center activities [11, 12, 13], lacking a comprehensive evaluation essential for enhancing the national LTx program to meet the needs of the population. Therefore, this study aims to evaluate the national LTx service over a 12-year period (2012-2023). It specifically seeks to analyze historical trends in living donor

*Yuliya.semenova@nu.edu.kz

and deceased donor LTx surgeries and LTx centers, projecting future developments until 2030. Additionally, the study aims to analyze the national cohort of patients awaiting LTx, examine their survival, and assess the epidemiology of common liver disorders indicating LTx. Future projections until 2030 will be made to anticipate the demand for LTx.

2. Materials and methods

2.1. Data sources

Various data sources were utilized to conduct this study. The primary data source was the database maintained by the Republican Center for Coordination of Transplantation and High-Tech Services under the Ministry of Health (MoH) of Kazakhstan, hereafter referred to as the Transplantation Coordination Center. This center serves as the main coordination body in the country, collecting information on potential donors and recipients and overseeing transplantation activities. As part of its responsibilities, the Transplantation Coordination Center manages the waiting list of patients awaiting LTx, initiated in 2012 concurrent with the introduction of liver transplants in Kazakhstan.

From this database, we extracted information on patients awaiting LTx but who never received it. The extracted data included the date of registration on the waiting list, current status (alive vs. deceased), and date of death (if applicable). For patients still alive at the time of data extraction, December 12, 2023, was considered the end of the follow-up period. Additional anonymized information extracted from the waiting list encompassed patient details such as age, sex, rhesus D antigen (RhD), and blood group. Data obtained from the Transplantation Coordination Center also included the number of living and cadaveric liver transplants in Kazakhstan, categorized by the year of surgery, as well as the count of LTx centers by year, and the number of LTx surgeries performed in each center, also by year. The timeline covered by these data spans from January 1, 2012, to December 12, 2023.

To complement findings on the number of patients awaiting LTx, official statistics on patients with liver diseases qualifying for LTx, as outlined in the national standard of care on LTx ([14], were obtained from the Electronic register of dispensary patients of the MoH. This electronic register encompasses information on all patients registered by healthcare facilities in Kazakhstan. Extracted data included the annual numbers of patients presenting with selected types of viral hepatitis and liver fibrosis and cirrhosis at outpatient healthcare facilities in Kazakhstan. Specifically, we addressed the following the International Classification of Disease 10th revision (ICD-10) codes for acute and chronic viral hepatitis: B15.0 (Hepatitis A with hepatic coma), B16.0 (Acute hepatitis B with delta-agent (coinfection) with hepatic coma), B18.0 (Chronic viral hepatitis B with delta-agent), B18.1 (Chronic viral hepatitis B without delta-agent), B18.2 (Chronic viral hepatitis C), B18.8 (Other chronic viral hepatitis), and B18.9 (Chronic viral hepatitis, unspecified). Regarding liver fibrosis and cirrhosis, the annual number of patients with the following ICD-10 codes was

extracted: K74.0 (Hepatic fibrosis), K74.1 (Hepatic sclerosis), K74.2 (Hepatic fibrosis with hepatic sclerosis), K74.3 (Primary biliary cirrhosis), K74.4 (Secondary biliary cirrhosis), K74.5 (Biliary cirrhosis, unspecified), and K74.6 (Other and unspecified cirrhosis of liver) (ICD-10 Version: 2019). The timeline covered by these data spans from January 1, 2015, to December 12, 2023.

National population statistics were sourced from the Bureau of National Statistics under the Agency for Strategic Planning and Reforms of Kazakhstan [15]. This dataset included the country's population numbers from January 1, 2012, to December 12, 2023, broken down by year. This information facilitated the calculation of LTx rates, the number of transplant centers per million population (pmp), and the prevalence of selected types of liver disease per 100,000 population.

2.2. Data analysis

All extracted data were organized in Excel spreadsheets. The Statistical Package for Social Sciences (SPSS) version 24.0 for Windows was employed for all data analyses in this study, with the significance level of all statistical tests pre-set at 0.05. The "Survival" function in SPSS was utilized to conduct the survival analysis of patients awaiting LTx in Kazakhstan. The primary variables were the date of registration on the waiting list and the date of death or the conclusion of the follow-up period (December 12, 2023). Life tables were computed to estimate cumulative survival at specific time intervals: 0 days, 30 days, 60 days, 90 days, 180 days, 360 days, 720 days, 1080 days, 1380 days, 1740 days, 2100 days, 2460 days, 2820 days, 3180 days, and 3540 days. The number of patients entering the interval and the number of patients withdrawing during the interval were documented. Cumulative mortality rates were calculated using the formula: 100 – cumulative survival. Kaplan-Meier analysis was employed to assess the probability that patients registered on the waiting list would survive until the end of the follow-up, as well as the mean and median survival with 95% Confidence Interval (CI). A graph reflecting the overall survival curve during the waiting period for LTx was generated.

The data of patients alive on the waiting list were analyzed in comparison with the data of patients who died without receiving LTx. Before analysis, the normality of data distribution was evaluated for continuous variables by computation of the Kolmogorov-Smirnov test and graphically, by generating histograms and Q-Q plots. Since the data distribution differed from normal, continuous variables were presented as median (Me) with 25th and 75th percentiles. Mann-Whitney U tests were employed for between-group comparisons. All categorical variables were presented as absolute numbers and percentages, and Pearson's chi-squared test was utilized for between-group comparisons.

The "Expert Modeler" function of SPSS was used to perform the time series analysis. As an initial step, annual nationwide prevalence rates of selected types of viral hepatitis (ICD-10 codes: B15.0, B16.0, B18.0, B18.1, B18.2, B18.8, and B18.9) and liver fibrosis and cirrhosis (ICD-10 codes: K74.0-74.6) were computed per 100,000 population for the period of 2015-2023. Additionally, the national pmp rates of LTx and

165 liver transplant centers were computed for the period of 2012-2023. The aggregated data encompassing annual prevalences, and the pmp rates of LTx and liver transplant centers, were organized in an Excel spreadsheet, indicating the reference year for the statistics. In the subsequent step, the best-fit epidemiological models for each type of predictive analysis were identified. 170 The projections of the prevalence rates and pmp rates of LTx and liver transplant centers were made until 2030. The projections for 2025 and 2030 were reported as estimates along with their 95% CI, and corresponding graphs were generated. 175

2.3. Ethics approval

180 This study was conducted in strict accordance with the principles outlined in the Helsinki Declaration. Prior to the commencement of data collection, approval from the local ethics committee was obtained[16]. 185

3. Results

190 In the period spanning 2012 to 2023, a total of 474 LTx surgeries were conducted in Kazakhstan. Among these, 411 procedures involved living donors, while 63 were sourced from deceased donors. Not a single DOMINO transplantation was performed during the study period. The pmp rates of LTx were notably higher for living donors in comparison to cadaveric 195 transplantations. This disparity was most evident during the period of 2015-2017, with pmp rates for liver donor transplants recorded at 2.55, 3.18, and 2.86, respectively. Conversely, this same timeframe witnessed an increase in cadaveric liver transplantation rates, reaching 0.68 in 2015, 0.56 in 2016, and 0.61 in 2017. The initial rise in pmp rates for liver transplants for both living and cadaveric donors saw a decline in 2018. Subsequently, there was a resurgence in living donor transplants in 2021, although it did not reach the rates observed during 2015-2017 (Figure 1). 200

205 From 2012 to 2023, a total of eight liver transplant centers operated in Kazakhstan, serving a population of approximately 20 million people, as outlined in the Table 1. In 2012, when the first liver transplantation was performed in Kazakhstan, there was one liver transplant center conducting six surgeries. By 2013, the number of liver transplant centers had increased to five, with an average of 4.2 surgeries per center (ranging from 1 to 10). The peak number of liver transplant centers, seven in total, was reached in 2014 and 2015. During these years, the mean number of LTx per center was 4.57 in 2014 and 8.14 in 2015, with a maximum number of surgeries performed in one center reaching 8 and 13, respectively. The number of centers started to decline in 2016 and continued until 2020 when there were only two liver transplant centers nationwide. However, during this same period, the maximum number of LTx performed in one center reached its peak in 2017 (32 surgeries). Over the past three years (2021-2023), four liver transplant centers have been operational in Kazakhstan, with the mean number of surgeries per center exceeding 10. 210 215

A total of 364 patients were awaiting liver transplantation since the inception of the national waiting list in 2012, and unfortunately did not receive liver transplantation. Among them,

181 were deceased by the end of the follow-up period (December 12, 2023), while 183 remained alive. Table 2 presents comparisons between these two groups (deceased vs. alive) regarding age, sex, blood group, and RhD antigen, revealing no significant differences.

186 Table 3 provides insights into the survival of patients registered on the liver transplant waiting list. Out of the 364 patients, 6 had passed away on the day of registration on the waiting list, resulting in a cumulative survival rate of 92.0%. At the end of the first month after registration on the waiting list, 328 patients were still alive, yielding a cumulative survival rate of 87.0%. Three months after registration on the waiting list, 292 patients remained alive, and the cumulative survival rate was 83%. By the end of the first year of registration on the waiting list, only 209 patients were alive, resulting in a cumulative survival rate of 68.0%, which declined to 58.0% at the end of the second year and 52.0% at the end of the third year. The 10-year cumulative survival after registration on the waiting list was 27.0%, with only 7 patients alive. 191

196 Figure 2 illustrates the Kaplan-Meier survival curve of patients awaiting liver transplantation over a period of 4211 days, by the end of which the cumulative survival rate reached 0.0%. The mean survival time on the waiting list was 1834.702 days (95% CI, 1615.654; 2053.749), and the median survival time was 1273.0 days (95% CI, 876.611; 1669.389).

201 To illustrate the potential need for liver transplantation, an epidemiological analysis was conducted, including prevalence rates of selected types of liver disease that might necessitate liver transplantation. Over the period of 2015-2023, the highest prevalence rates were observed for chronic viral hepatitis B without the delta agent (ICD-10 code 18.1), increasing from 18.50 per 100,000 population in 2015 to 137.85 in 2023 (average annual increase of 28.13% (95% CI, 23.35; 33.10)). This was followed by chronic viral hepatitis C (ICD-10 code B18.2), which increased from 14.82 per 100,000 population in 2015 to 170.11 in 2023 (average annual increase of 35.29% (95% CI, 32.55; 38.08)). There was also an increase in the prevalence rates of liver fibrosis and sclerosis (ICD-10 codes: K74.0-74.6). The most substantial increase was observed in the rates of hepatic fibrosis with hepatic sclerosis (K74.2), rising from 0.51 per 100,000 population in 2015 to 7.72 in 2023 (average annual increase of 38.90% (95% CI, 33.06; 44.99)) (Table 4). Table 5 presents estimates of projected prevalence rates of selected types of viral hepatitis and liver fibrosis and cirrhosis. The forecasts of liver disease are accompanied by projections of pmp rates of LTx and liver transplant centers in 2025 and 2030. According to projections, the rate of viral hepatitis with the potential to require liver transplantation will increase to 501.94 per 100,000 population in 2025 and 1081.37 in 2030, while the rate of liver fibrosis and cirrhosis will experience a more abrupt increase (54.87 per 100,000 population in 2025 and 121.04 in 2030). However, the projected pmp rates of liver transplant centers and liver transplant surgeries will remain the same in both 2025 and 2030. Figure 3 supplements the findings of Table 5, providing a graphical representation of projections until 2030. Although the forecast curves show an increase in prevalence rates for both viral hepatitis and liver fibrosis and cirrhosis, the 206 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 93

275 curves remain stable for rates of liver transplant centers and³³⁰
transplant surgeries.

4. Discussion

To the best of our knowledge, this study is the first attempt to³³⁵
evaluate the performance of Kazakhstan's national LTx service
280 from its inception in 2012 to the current date in 2023. The overall pmp rate of LTx ranged from 0.35 (2012) to 3.77 (2016), and
LTx from living donors surpassed those from deceased donors
285 multiple times. Throughout the analyzed period, the count of³⁴⁰
liver transplant centers fluctuated between 1 and 7 for a popula-
tion of approximately 20 million people, resulting in pmp rates
ranging from 0.06 to 0.40. A total of 474 patients underwent
LTx, while another 364 patients were on the waiting list but did
not receive transplantation. Among these, 181 patients were³⁴⁵
deceased, and 183 were still alive by the end of 2023, with no
290 significant differences observed between these two groups. The
30-day cumulative survival on the waiting list was 87.0%, and
1-year survival was 68.0%. The prevalence of selected types of
viral hepatitis and liver cirrhosis steadily increased from 2015³⁵⁰
to 2023, and projections suggest this trend will persist until
295 2030. Without targeted interventions, the pmp rates of LTx and
liver transplant centers are expected to remain stable, contributing
to the backlog of unoperated patients awaiting transplanta-
tion. These findings warrant a more in-depth discussion. ³⁵⁵

According to the GDOT data, in 2022, Kazakhstan ranked
300 11th in the list of countries based on pmp rates of LTx from liv-
ing donors, dropping from its 8th position in 2021. However,
the overall pmp rates of LTx in Kazakhstan are relatively low,
with the country ranking 48th out of 91 countries in 2021 and³⁶⁰
51st in 2022. Nonetheless, Kazakhstan stands out as the leader
305 in LTx activities in Central Asia, surpassing other countries in
the region in pmp rates. When compared with other post-Soviet
countries, Kazakhstan ranked 5th in 2022 and 2021, following
Lithuania, Belarus, Estonia, and Georgia. In general, the pat-³⁶⁵
tern of LTx activities in Kazakhstan mirrors that seen in the
310 South-East region, characterized by a significant predominance
of LTx from living donors and relatively lower overall pmp rates
[10].

Regarding transplant centers, the pmp rates observed in³⁷⁰
Kazakhstan were lower than those in other global regions. For
315 instance, in 2022, the region of the Americas had 2.4 liver
transplant centers pmp, Europe had 3.0, the South-East region
had 6.7, the Western Pacific region had 7.7, and the Eastern
Mediterranean region exhibited the highest pmp rates of liver³⁷⁵
transplant centers at 13.2 [10]. The number of liver transplant
320 centers in Kazakhstan is comparable to that in the United King-
dom, where there are seven centers for a population of approx-
imately 64 million people [17]. When considering the number
of LTx surgeries performed in Kazakhstan, the liver transplant³⁸⁰
325 centers appear to be low-volume, with the majority conducting
fewer than 10 LTx per year. The only high-volume center in the
country, the National Scientific Center of Surgery named after
Syzganov, performed a maximum of 32 LTx per year.

Presently, LTx services in the country are provided free of³⁸⁵
charge to residents, funded by the health insurance fund. This

funding encompasses the surgical costs for both the recipient
and the donor. However, ancillary expenses such as pre-surgical
examinations, tests, and post-surgical rehabilitation often incur out-of-pocket expenses [18]. There are no imposed bud-
get constraints on the quantity of LTx procedures conducted in
the country. Nevertheless, the relatively low rates of LTx are
attributed to the opt-in approach adopted in Kazakhstan [19]. Under this approach, consent for organ donation after death
must be obtained, typically granted by the deceased's relatives
in the absence of a declared will [20]. Generally, the opt-in
approach tends to yield fewer organ transplants compared to the opt-out approach, where all deceased individuals are auto-
matically considered potential donors. Experiences from the
European region demonstrate that countries adopting the opt-
out approach tend to have higher LTx rates [21]. It's worth noting
that Kazakhstan used to have an opt-out system, leading to
more organ transplants between 2015 and 2017. However, this
changed after an incident in 2017-2018 when some transplant
surgeons were accused of mishandling organ transplants. Even
though they were eventually cleared of all charges [22], this inci-
dent had a lasting impact, and pmp rates haven't reached the
levels of 2015-2017 even after six years.

The Transplantation Coordination Center functions as a non-
profit organization, serving as the national intermediary among
40 donor hospitals and 4 transplant centers. This center con-
solidates information on patients eligible for LTx into a unified
national waiting list. The criteria for notification from donor
hospitals to the Transplantation Coordination Center involve
potential donors meeting the criterion of brain death; currently,
donation after circulatory death is not practiced. Throughout
the study period, there was no cross-border exchange of donors
or recipients with other countries in the region, and all liver
transplants were exclusively performed on Kazakhstani citi-
zens. The indication for liver transplantation is determined by
a Child-Turcotte-Pugh score of 7 or higher (classes B and C)
[6], with the Model for End-Stage Liver Disease (MELD) not
currently in use. The survival analysis reveals a notable pro-
portion of patients facing mortality shortly after entering the
waiting list, indicating a 13% cumulative one-month mortality.
This underscores the potential benefits of earlier inclusion in
the waiting list for these patients.

Globally, over the past decade, there has been a shift in the
indications for LTx. End-stage liver cirrhosis remains a major
indication [23], aligning with the national standards of LTx in
Kazakhstan (Clinical protocol, 2019). However, the global eti-
ology of liver cirrhosis has changed, moving away from viral
hepatitis due to the availability of effective antiviral medica-
tions and shifts in lifestyle and dietary approaches. In Kazah-
stan, the burden of viral hepatitis is substantial and continues
to grow, as indicated by our findings and earlier scientific data
[24]. Direct-acting antiviral hepatitis C drugs have not gained
widespread use in Kazakhstan, and despite anti-viral hepatitis B
vaccination being included in the national vaccination schedule
in 1998, the prevalence of anti-HBcore antibodies was reported
to be 17.2%, surpassing rates in many other countries [25]. The
projections of viral hepatitis and liver cirrhosis until 2030 indicate a likely increase in these diseases' prevalence, suggesting

a rising demand for LTx. Public health action is imperative to augment LTx activities in Kazakhstan to meet the growing demand for LTx surgeries.

450

390 5. Limitation

This study has several limitations. The primary limitation is that the data available in the national waiting list of patients awaiting LTx are limited, with many specific details related to underlying diagnoses missing. This limitation makes the calculation of cause-specific survival impossible and restricts the analysis of associated risk factors. Another limitation arises from the fact that forecast modeling utilized prevalence rates of selected types of viral hepatitis and liver fibrosis and cirrhosis, but data on end-stage liver disease were not available, as the study solely relied on ICD-10 codes, thereby limiting the capacity of projections. Additionally, the projected rates of both liver disease prevalence and LTx rates should be interpreted with caution, as they serve as an illustration of the need for public health action to address the existing situation. Nonetheless, this study boasts several strengths, the most notable being its status as the first nationwide study analyzing the outputs and outcomes of LTx services.

400 This research has been/was/is funded by the Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant title: Non-invasive methods for diagnosis of transplant rejection as a predictor of long-term graft survival, Grant No. BR21882206).

410 Correspondence and requests for materials should be addressed to Y.S.

415 References

- [1] D. Lopes, H. Samant, Hepatic failure (2023).
- [2] N. J. Shah, A. Royer, S. John, Acute liver failure (2023).
- [3] A. Sharma, S. Nagalli, Chronic liver disease (2023).
- [4] S. Cheemera, M. Balakrishnan, Global epidemiology of chronic liver disease, *Clinical Liver Disease* 17 (2021) 365–370. doi:10.1002/cld.1061.
- [5] Y. Dababneh, O. Y. Mousa, Liver transplantation (2023).
- [6] C. G. Child, J. G. Turcotte, Surgery and portal hypertension., Major problems in clinical surgery 1 (1964) 1–85.
- [7] P. Martin, A. DiMartini, S. Feng, R. Brown, M. Fallon, Evaluation for liver transplantation in adults: 2013 practice guideline by the american association for the study of liver diseases and the american society of transplantation., *Hepatology* (Baltimore, Md.) 59 (2014) 1144–65. doi:10.1002/hep.26972.
- [8] L. Harries, J. Gwiadsa, Z. Qu, H. Schrem, C. Krauth, V. E. Amelung, Potential savings in the treatment pathway of liver transplantation: an inter-sectorial analysis of cost-rising factors, *The European Journal of Health Economics* 20 (2019) 281–301. doi:10.1007/s10198-018-0994-y.
- [9] N. A. Terrault, C. Francoz, M. Berenguer, M. Charlton, J. Heimbach, Liver transplantation 2023: Status report, current and future challenges, *Clinical Gastroenterology and Hepatology* 21 (2023) 2150–2166. doi:10.1016/j.cgh.2023.04.005.
- [10] International report on organ donation and transplantation activities., Global Observatory on Donation and Transplantation. URL <https://www.transplant-observatory.org/>
- [11] D. Toksanbayev, N. Sadykov, E. Moldabekov, M. Doskhanov, M. Duisebekov, S. Kaniyev, Liver transplant experience in syzganov's national scientific center of surgery., *Experimental and clinical transplantation : official journal of the Middle East Society for Organ Transplantation* 13 Suppl 3 (2015) 41–3. doi:10.6002/ect.tdtd2015.026.
- [12] Z. Baimakhanov, S. Kaniev, M. Doskhanov, C. Sadykov, E. Serikuly, A. Skakbayev, B. Ilyassova, D. Baigussova, M. Seisembaev, A. Chormanov, B. Baimakhanov, Evolution of liver transplantation in kazakhstan: Two-era experience of a single center, the first report, *Transplantation Proceedings* 51 (2019) 3360–3363. doi:10.1016/j.transproceed.2019.07.023.
- [13] J. Saparbay, J. Spatayev, A. Sharmanov, S. Aytbayev, A. Uristenova, A. Mukazhanov, A. Zhexembayev, Liver transplantation: A 10-year low-volume transplant center experience in kazakhstan, *Annals of Transplantation* 26 (6 2021). doi:10.12659/AOT.931786.
- [14] Clinical protocol for liver transplantation., *the Ministry of Health of the Republic of Kazakhstan* (2019). URL <https://diseases.medelement.com/disease/%D1%82%D1%80%D0%B0%D0%BD%D1%81%D0%BF%D0%BB%D0%B0%D0%BD%D1%82%D0%BD%D1%86%D0%B8%D1%8F-%D0%BF%D0%B5%D1%87%D0%B5%D0%BD%D0%B8-%D0%BA%D0%BF-%D1%80%D0%BA-2019/16552>
- [15] Agency for strategic planning and reforms of the republic of kazakhstan. bureau of national statistics. statistical collections. URL <https://stat.gov.kz/>
- [16] Minutes of the meeting of the local commission on bioethics, the Corporate Fund “University Medical Center (7 2023). URL <https://umc.org.kz/?ethics-commission=post>
- [17] J. Neuberger, Liver transplantation in the united kingdom, *Liver Transplantation* 22 (2016) 1129–1135. doi:10.1002/lt.24462.
- [18] Health insurance fund, *Government of the Republic of Kazakhstan*. URL <https://fms.kz/en/>
- [19] The order approving the regulations for the removal, procurement, storage, preservation, transportation, transplantation of organs (parts of an organ) and (or) tissues (parts of tissue) from a donor to a recipient, *The Ministry of Health of the Republic of Kazakhstan* (2020). URL <https://adilet.zan.kz/rus/docs/V2000021683#z16>
- [20] M. U. Ahmad, A. Hanna, A. Mohamed, A. Schlindwein, C. Pley, I. Bahner, R. Mhaskar, G. J. Pettigrew, T. Jarmi, A systematic review of opt-out versus opt-in consent on deceased organ donation and transplantation (2006–2016), *World Journal of Surgery* 43 (2019) 3161–3171. doi:10.1007/s00268-019-05118-4.
- [21] P. C. Müller, G. Kabacam, E. Vibert, G. Germani, H. Petrowsky, Current status of liver transplantation in europe, *International Journal of Surgery* 82 (2020) 22–29. doi:10.1016/j.ijsu.2020.05.062.
- [22] Thousands of patients are doomed - organ transplant operations have been reduced in kazakhstan, *Sputnik Kazakhstan* (2019). URL <https://ru.sputnik.kz/20191221/transplantatsiya-kazakhstan-prekraschenie-12345885.html>
- [23] R. Adam, V. Karam, V. Cailliez, J. G. O. Grady, D. Mirza, D. Cherqui, J. Klempnauer, M. Salizzoni, J. Pratschke, N. Jamieson, E. Hidalgo, A. Paul, R. L. Andujar, J. Lerut, L. Fisher, K. Boudjema, C. Fondevila, O. Soubrane, P. Bachellier, A. D. Pinna, G. Berlakovich, W. Bennet, M. Pinzani, P. Schemmer, K. Zieniewicz, C. J. Romero, P. D. Simone, B.-G. Ericzon, S. Schneeberger, S. J. Wigmore, J. F. Proux, M. Colledan, R. J. Porte, S. Yilmaz, D. Azoulay, J. Pirenne, P.-D. Line, P. Truneca, F. Navarro, A. V. Lopez, L. D. Carlis, S. R. Pena, E. Kochs, C. Duvoix, 2018 annual report of the european liver transplant registry (eltr) - 50-year evolution of liver transplantation, *Transplant International* 31 (2018) 1293–1317. doi:10.1111/tri.13358.
- [24] A. Jumabayeva, A. Nersesov, M. Kulzhanov, M. Nefedova, G. Nuraliyeva, G. Rakimbekova, S. Tanabayeva, I. Fakhradiyev, Prevalence of viral hepatitis b, c, and d in kazakhstan, *The Scientific World Journal* 2022 (2022) 1–8. doi:10.1155/2022/9102565.
- [25] T. Savchuk, Y. Grinvald, M. Ali, R. Sepetiene, S. Saussakova, K. Zhangazieva, D. Imashpayev, S. Abdurakhmanova, Antibodies to hepatitis b core antigen prevalence study in kazakhstan, *Immunity, Inflammation and Disease* 11 (3 2023). doi:10.1002/iid3.793.